
GE6151 COMPUTER PROGRAMMING

LECTURE 3

Prof. Dr. M. Paulraj PhD.,

SRIT

Coimbatore-10

Expressions

It is a sequence of operands and operators that reduce
to a single value.

Operator : It is a symbolic token that represents an
action to be taken.

Ex: * is an multiplication operator.

Operand: An operand receives operators action.

Ex: A + B

In this A and B are operands and + is an operator.

Note: Expressions always evaluate to a single value.
There is no limit to the number of operator and operand
sets in an expression.

Ex: 5.0/9.0*(fah –32.0)

EXPRESSION
An expression may be a simple constant or a simple name
or a constant or name connected suitably by the help of an
operator or it may be a parenthetical expression.

Example:

1. Integer Constant 5

2. Character Constant ‘a’

3. Name (variable) sum

4. Constant and constant 5+6

5. Constant with variable 5 + sum

6. Variable with constant sum + 5

In the above example case 4,5,6 are binary expressions,
since there are two operands and one operator.

Arithmetic Operators
Integers, floating point numbers, and double precision
numbers can be added, subtracted, multiplied or
divided using operators called arithmetic operators.

Operation Operator Example

Addition +
2+3 = 5, 2.3+3 = 5.3
2.3+5.2= 7.5

Subtraction -
3-2 = 1, 3-2.3= 0.7
3.0-2.3=0.7

Multiplication *
3*5=15, 3.1*5= 15.5
3.1*5.0=15.5

Division /

5/2 =2, 4/3=1, 1/2 = 0
5.0/2=2.5
5.0/2.0=2.5

Remainder %
5%2=1
11%6=5

An expression contains only integer operands is called an
integer expression.

An expression containing only floating-point operands is
called a floating-point expression; the result is a double
precision value.

Although it is usually better not to mix integer and
floating-point operands in an arithmetic operation, the
data type of each operation is determined by the following
rule:

If all the operands are integer then the result is integer.

If any operand is floating point or double precision then
the result is double.

INTEGER DIVISION
Dividing an integer by another integer will produce a
strange result. The answer will not have a decimal
point. The result will be an integer. The fractional part
will be truncated.

Example
6/2 = 3 6/5 = 1 6/3 = 2 6/4 = 1 1/2 = 0

To capture the remainder after the integer division
Remainder operator (%) can be used.

Example
6%2 = 0 6%5 = 1 6%3 = 0 6%4 = 2

Note: In remainder operation both the integers must be
integer.

A Unary operator
The minus sign is a Unary operator. A minus sign place
before a single numerical operand negates the number.
Example:

-4
-2.34567
-sum

Rules for writing expressions with more than one
operators:
1. Two binary arithmetic operator symbols never be placed

side by side.

Example : 4+ *2 is invalid because two operators + * are
placed next to each other.

2. Parenthesis may be used to form groupings, and all the
expressions enclosed within the parenthesis will be
evaluated first.

3.When parenthesis are used within parenthesis, the
expression in the inner most parenthesis will be evaluated
first. The evaluation continues from innermost to outermost
parenthesis until the expressions in all parentheses have
been evaluated.

4. The number of right-facing parenthesis must be equal to
the number of left-facing parenthesis.

Example:

(6+4) / (2+3) = 2

In the above example first (6+4) will be evaluated first and
then (2+3) will be evaluated yielding the result as 10/5. The
10/5 will be evaluated to yield the result as 2.

5. Parenthesis can not be used to indicate multiplication.
The multiplication operator * must be used.
Example:
(3+4) (4+5) is invalid
(3+4) * (4+5) is valid

(2 * (3 + 7)) / 5 = 4

1

2

3

Example:

As a general rule parenthesis is used to specify logical
grouping of operands.

Postfix increment / decrement Operator
It consist of one operand followed be an operator.
The operators are :

++
_ _

The general format of postfix operation is

Unary operator Operand

Example: a++ sum++
a-- value- -

The value of the expression is equal to the value of ‘a’
before the increment .

The meaning of ‘a++’ is return the value stored in ‘a’ as
the value of the expression and then increment the content
of ‘a’ by one and store the result in ‘a’ itself.

The postfix operator has a precedence level of 16.

The postfix operator has associativity from left to
right.

Example :
Suppose a = 10; The value of the expression ‘a++’ is 10.

Then ‘a++’ will make the value of of a as: 10+1 = 11.

Example:
Suppose a = 10; The value of the expression ‘a--’ is 10.

Then ‘a--’ will make the value of a as: 10 –1 = 9;

/* program in c to implement ++ operator */
#include <stdio.h>
int main(void)
{
int a;
a = 10;

printf(“The value of a is %d \n”,a);
printf(“The value of a++ is %d\n”, a++);
printf(“The new value of a is %d\n”,a);
return 0;
}
Results:
10
10
11

Prefix increment / decrement Operator
It consist of one operator followed be an operand
The operators are :

++
_ _

The general format of postfix operation is

Unary operator Operand

Example: ++a ++sum
--a --value

The value of the expression is equal to the value of a + 1. The
meaning of ‘++a’ is increment the content of ‘a’ by one and
store the result in ‘a’ itself. The prefix operator will have
association from right to left and it has the precedence level of
15.

Example :
Suppose a = 10; The value of the expression ‘++a’ is 11.
Then ‘++a’ will make the value of of a as: 10+1 = 11.
Example:
Suppose a = 10; The value of the expression ‘- -a’ is10.
Then ‘--a’ will make the value of a as: 10 –1 = 9;

/* program in c to implement ++ operator */
#include <stdio.h>
int main(void)
{
int a;
a = 10;
printf(“The value of a is %d\n”,a);
printf(“The value of ++a is %d\n”, ++a);
printf(“The new value of a is %d\n”,a);
return 0;
}
Results:
10
11
11

sizeof() operator
Though sizeof() looks like a function , it is an operator. The sizeof
operator returns the number of bytes of the data type included in the
parenthesis. The sizeof operator is an integral part of the C language.

#include<stdio.h>
int main(void)
{
printf(“The size of char is d\n”,sizeof(char));
printf(“The size of int is %d\n”,sizeof(int));
printf(“The size of float is %d \n”, sizeof(float));
printf(“The size of double is %d\n”, sizeof(double));
return 0;
}

Result:
1
2
4
8

Operator Precedence
Precedence of an operator establishes its priority relative to other
operators.
Precedence is used to determine the order in which different
operators in a complex expression are evaluated.
Each operator has a precedence value. The operator with a higher
precedence number is used before the operators with lower
precedence.

Example: 6 + 4/2 + 3

1
2

3

--a * (3 + b) /2 - c++ * b

If initially, a = 3, b = 4 and c = 5

Warning: If a single variable is modified more than

once in an expression, the result is undefined.

2 * (3 + 4) / 2 - 5 * 4

2 * 7 / 2 - 5 * 4

14 / 2 - 5 * 4

7- 5 * 4

7- 20 = -13

% 4/ 4

Associativity
Associativity is used to determine the order in which the operators with
the same precedence are evaluated in a complex expression.

Precedence is applied before associativity to determine the order in which
expressions are evaluated. Associativity is applied next.

Associativity can be from the left or the right. Left associativity evaluates
the expression from the left and moving to the right. The right associativity
evaluates the expression by processing from the right to the left.
Remember, associativity is only when the operators all have the same
precedence.

3 * 8 / 4 % 4 * 5

3 * 8 * 5

1 2 3 4

= ((((3 * 8) / 4) % 4) * 5)

Right Associativity
Only three types of expressions associate from the right. They are the
unary expressions (Pre increment ++ and decrement --, +, -, !, address &,
indirection *, one’s complement ~), Conditional operator (? :) and
assignment statement(=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=).

When more than one assignment operator occurs in an assignment
expression, the assignment expression must be evaluated from the right to
left.

a += b *= c -= 5 (a = a + (b = b * (c = c-5)))

If initially, a = 3, b = 5 and c = 8 (a = 3 + (b = 5 * (c = 8-5)))

(a = 3 + (b = 5 * (3)))

(a = 3 + (15))

a =18

•Associativity is applied when we have more than one
operator of the same precedence level in an expression.

•Expressions containing operators with the same
precedence are evaluated according to their association.

•This means that evaluation is either from left to right or
right to left as each operator is encountered.

Example:

7 + 2 * 5 / 3 = 10

1

2

3

Example:
If a = 101; b = 20; c = 30 Evaluate the following

expression.

-- a * (1+b) / 3 - c++ * b

100 * (1 + 20) / 3 - 30 * 20

= 100

Assignment Expression (Simple)

Variable = Expression

A = 20

•The expression on the right hand side of the assignment
operator will be evaluated first.

•The evaluated single value will be assigned to the variable
name on the left hand side.

Example :
Let x = 20, y = 30. When the assignment expression z = x
+ y is evaluated the result will be z = 50;

Compound Assignment:
A compound assignment is a short hand notion for a simple
assignment. The operators for the compound assignment
are :

*=, /=, +=, -=, %=.

Compound Expression Meaning

x+=y x = x + y

x-=y x = x - y

x*=y x = x * y

x/=y x = x / y

x%=y x = x % y

The assignment operator has the lowest precedence level.
m *= x + 3 is equivalent to : m = m*(x+3)
Since x+3 will be evaluated first.
Mixed Type Expressions:
When the data types in an expression are of mixed type then
expression will be evaluated according to the following
promotion hierarchy.

Note: In an assignment expression, the final value must be
same type as the left operand.

Explicit Type Conversion
(cast Operator)
By explicitly specifying the type of data within () data type
conversion can be done.
The operand must be an unary expression.

Example
To convert a data from int to float,

use (float) a /* assuming a is of type int */
if x is of type float, (int) x gives a integer type value.

STATEMENTS

A statement is an action to be performed by the program.
It translates into one or more executable computer
instructions.

ANSI C supports six types of statements.

1.Expression Statement
2. Compound Statement
3. Labeled Statement
4. Selection Statement
5. Iterative Statement
6. Jump Statement

Expression Statement

When an expression is terminated by a semicolon
then it is called an expression statement. When an
expression statement is executed, C completes the
pending side effects and discards the expression
value before continuing with the next statement.

Example

x = 2;
The effect of the expression statement is to store the value
of 2 to x. The value of the expression will be discarded after
the value is stored in the variable.

Compound statement
A compound statement is a unit code consisting of zero or
more statements. It is also known as a block. A compound
statement consists of a an opening brace “{ “ , an optional
declartion, optional statement section, followed by a
closing brace “}”.

Example
{ = Opening

Brace
int x,y;
x = 0;
y = 0;
prinyf(“%d %d\n”,x,y);

} = Closing

Brace

#define directive for creating constant macro

Syntax: #define NAME value

Examples:

#define PHI 22.0/7.0
#define MAX_LENGTH 100
#define MILES 0.8930
#define DEGREE_FACTOR 57.295779

Simple Programs

/*program in C to compute the area, circumference of a circle
given the radius of a circle */

#include<stdio.h>
#define PHI 3.1412857
void main(void)
{
float radius,circum,area;
printf(“Please input the radius ”);
scanf(“%f”,&radius);
area = PHI*radius*radius;
circum = 2.0*PHI*radius;
printf(“Radius of the circle is %f\n”,radius);
printf(“The area of the circle %f\n”,area);
printf(“The circumference is %f\n”,circum);
return;
}

/*Program to find the sum of all the digits of a three digit number*/
#include<stdio.h>
void main(void)
{
int number,fd,sd,td,sum;
printf(“A three digit number please ”);
scanf(“%d”,&number);
td = number – (number/10)*10;
number = number/10;
sd = number – (number/10)*10;
fd = number/10;
sum = fd+sd+td;
printf(“The sum of the digits of the

number is %d\n”,sum);
return;
}
if number = 234, td = 234 – (234/10)*10 = 234 – 23*10 = 4
then number = number/10 = 234/10 = 23;
sd = 23 – (23/10)*10 = 23 – 20 = 3;
fd = 23/10 = 2; sum = 2+3+4 = 9;

